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Chapter 1

Background:

Inner Product Spaces
N y

0. Introduction

The main topics to be studied in this chapter are orthogonal and orthonormal
systems in a vector space with inner product, as well as various related con-
cepts. These topics are sometimes, but not always, discussed in a basic course
in linear algebra. Of central importance is the subject of infinite orthonor-
mal systems which we present at the end of this chapter. These results will
be applied in the next chapter on Fourier series. The first four sections of this
chapter are a condensed review of some concepts and basic ideas (with proofs)
from linear algebra. We use these facts in developing the different topics of
this book. The reader will hopefully find in these sections a helpful synopsis
and review of his knowledge of the area.

1. Linear and Inner Product Spaces

The basic algebraic structure which we use is the linear space (often called
vector space) over a field of scalars. Our “field of scalars” will always be either
the real numbers R or the complex numbers C. Elements of a linear space are
called vectors. Formally, a non-empty set V is called a linear space over a field
F if it satisfies the following conditions:

1. Vector Addition: There exists an operation, generally denoted by “+”, such
that for any two vectors u,v € V, the “sum” v + v is also avectorin V.

2. Associativity: Foreveryu,v,w € V, we have (u + v) + w = u + (v + w).

3. Zero Vector: There exists a vector which we denote by 0 and call the “zero
vector” satisfying 0 + v = v, forallv € V.
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4. Inverse vector: For every vector v € V there exists a vector, which we
denote by —v, and call “minus v”, such that v + (—v) = 0.

5. Commutativity: For everyu,v € V wehaveu + v = v + u.

6. Multiplication by a Scalar: Multiplication by scalars is permissible. That
is, foreach v € V and scalar a € F, there is defined av € V.

7. Foreverya € Fandu,v € V,a(u+v) = au + av.
8. Foreacha,b€ Fandu €V, (a + b)u = au + bu and a(bu) = (ab)u.
9. For the unitscalar 1 of F and everyv € V, 1.v = v.

If V' is a linear space over the field of reals R, then we say that V is a real linear
space. IV is alinear space over the field of complexnumbers €, thenwe call V a
complex linear space. Asubset W of V (W C V) is said to be a linear subspace of
the space V if all the above conditions hold for W over the same field of scalars
as for V. Of course, the operations of vector addition and multiplication by a
scalar must be the same in W as in V. A well-known criterion for checking if
W is a subspace is the following: W # 0 and for everyu,v € W and a,b € F
we have au + bv € W. In other words, W is a linear subspace of V if and only
if W is a non-empty subset of V, which is closed under the operation of vector
addition and multiplication by scalars. We assume in what follows, unless
stated otherwise, that all our linear subspaces are complex. We now quickly
review a number of important concepts related to linear spaces.

Definition 1.1: Let V be a linear space and vi,...,v, € V. The vector u is
said to be a linear combination of the vectors vy, ..., v, if there exist scalars
al,...,a, € F such that

u=ajvy +axvy + - + apv,.

The collection of all vectors u which are linear combinations of v, ..., v, is
called the span of vy, .. ., v, and will be denoted by span{v,, ... ,v,}.

We also say that vy, ..., v, span W. Note that W = span{vy,...,v,} isa
linear subspace of V.

Definition 1.2: LetV be a linear space. The vectorsvi,...,v, € V are said to
belinearly independent if the equation

a1vy + agve + -+ + apvn =0, a1,as,...,a, € F,

is satisfied only by the scalars ay = --- = a, = 0. Otherwise we say that the
vectorsvy, ..., v, arelinearly dependent.
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From the above two definitions it immediately follows that the vectors v,
..., v, are linearly independent if and only if for each ¢, 1 < ¢ < =, the vector v;
is not a linear combination of the other vectors of the set.

Definition 1.3: A finite set of vectors v\, ..., v, is said to be a basis for the
linear space V if the set of vectors vy, ..., vy, is linearly independent andV =
span{vi,...,v,}. The natural number n is called the dimension of V and we
writen = dim(V).

The reader will recall from his knowledge of linear algebra that every real
or complex non-trivial linear space has an infinite number of different bases.
However, any two bases have the same number of elements and thus the
definition of dimension is in fact independent of any specific choice of basis
{not necessarily finite in number). Every linear space has a dimension (which
may be infinite).

Another important concept is that of an inner product. Note that the def-
inition of a linear space does not include an operation of “multiplication”
between vectors. The inner product could be considered as such an operation.
However, linear spaces do not in general possess an inner product.

Definition 1.4: (Inner Product) Let V be a real or complex linear space. An
inner product is an operation between two elements of V which results in a
scalar (and not a vector!). We denote it by (u,v), i.e., {u,v) € C. It satisfies:

1. Foreachv €V, (v,v) is a non-negative real number, i.e., (v,v) > 0.
2. Foreachv €V, {v,v) = 0 ifand only ifv = 0.

3. Foreachu,v,w € V anda,b € F, {au + bv,w) = a {u,w) + b{v,w).
4. Foreachu,v € V we have (u,v) = (v, u).

A linear space with an inner product defined on it is called an inner product
space.

The expression (v, u) denotes the complex conjugate of the complexnumber
{v,u). If our field of scalars is R, then in place of Condition 4 we write (u,v) =
(v,u). There are numerous consequences of the above four conditions. Here
are a few of them.

(a) Foreachu,v,w € Vanda,b € C, (u,av + bw) = @ {u,v) + b (u, w).
(b) Foreachwv € Vanda € C, (av,av) = |af? (v,v).
(c¢) ForeachwveV, <6,v> =0.
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(d) In general, for each finite sequence of vectors {u}?_;, scalars {ae}f- 1
and every vector v,

(3 k=10kur, v) = k1 ak (ug,v),

(v, Xk=1 Gruk) = 35y Tk (v, ug) .

We now consider some typical examples of inner product spaces.

Example 1.1: The Euclidean space V = R" with the usual operations of
vector addition and multiplication by a scalar is a linear space over R. Let

r = (ry,72,...,7,) beavector of strictly positive numbers, i.e.,,r, > 0,1 < k < n.
We define an inner product (-, ). on R" in the following way: For each pair of
vectors x = (1,22, ...,2,) andy = (y1,92,...,y:) in R®, set

X Y>r Z TeTkYk-

The vectorris called the weight vectorof the inner product. fry, =1,1 <k <n,
then the inner product is denoted x-y,

Xy =Ty + T2y2 + - + TnYn,

and is said to be the standard inner product (or dot product) on R™.

Example 1.2: Analogously to the previous example, V = C* with the usual
vector addition and multiplication by scalars is a linear space over C. Let r be
as in Example 1.1. For each pairx,y € €", we define

(%, ¥)r Z TkTkYk-

Itis not difficult to prove that this is an inner product on C*. As in the previous
example, the standard inner product on C" is

Xy =m0yl + 2292 + -+ TpYn-

Example1.3: LetV = C[a, b be the space of continuous functions f : [a, 5] —
C with the usual operations of sum of functions and multiplication by scalars.
This is a linear space over C. For each pair of functions f, g € C[a, b], we define

(f,0) = / ' f(e)o(a) do

It is easy to verify that this is an inner product on Cfa, b].
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Example 1.4: Set

€2={x

That is, £, is the space of infinite sequences of complex numbers {z,},;, for
which the series 1, |z, |> converges. Vector addition in ¢, is the usual vector
addition of two sequences, and multiplication by a scalar is also the standard
one. We will later prove that ¢; is a linear space over C (the fact that ¢; is closed
under vector addition is not obvious). For each x,y € ¢, we define

o0
x = {z1,Z2,...), Tn € C, Z[znlz <oo}.

n=1

00
<x7 Y> =Xy = Z TnYn-

n=1

It is easily shown that (-, ) satisfies all four conditions in the definition of the
inner product. It is more difficult to prove that the series 32| z,J, converges
foreveryx,y € £». This factisaconsequence of the Cauchy-Schwarz inequality
which we prove in the next section.

Exercises

1. LetV;, Vs, ..., V, be linear subspaces of a linear space U over C. Prove
that V = N2, V; is a linear space. What can you say about W = Uy_, Vi?

2. Prove that the set
V ={f] f:R— R, fisabsolutely integrable over R }

is a linear space over R.

3. Let C[—1,2] denote the space of continuous complex-valued functions
f :]-1,2] = €. Which of the following define an inner product on
C [—1, 2], and which do not? Explain.
(@) = [2,1f(®) +g(t)| dt
(b) f,g> P2, F(0)g(t) dt + f(=3)g(=3)
© (f,9)=3J%f(t )g(t) dt
@ (f,9) = F(0)g(0) + f(1)g(T)

4. LetV = C?[—n,n] be the space of real-valued twice continuously differ-
entiable functions defined on the interval [—=, ]. Set

(.90 = F(=mgl=m) + [ f"(2)g’ (@) do-

Is this an inner producton V?
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5. LetC![0,1] denote the space of continuous functions f : [0, 1] — C witha
continuous first derivative on [0, 1]. Set

(f:9) = £(0)g(0) + £(0)g'(0) + F(1)g (D).
{(a) Is this an inner product on the subspace P, = span{1, z, xz}?
(b) Isitan inner producton C1[0,1]?
6. Let C'[0,1] be as in Exercise 5. Which of the following define an inner
product on C'[0, 1]2
@ (f,9) = F(0)g(0) + Jy /() (D) dt

() (f,) = F(0)300) + £/(1)g (1)
© (90 =203 F0atidt - [} F()(® at

2. The Norm

There is a connection between the concept of a norm and that of an inner
product. The definition of a norm is in no way dependent upon that of an
inner product. However, in every inner product space one can always define a
norm in a very natural way.

Definition 1.5: LetV be a linear space. Anorm on'V is a function fromV to
R.+ which we denote by || - ||, and which satisfies the following properties:
(1) Foreachv eV, ||| >0.
(2) ljv|| = 0 ifand only ifv = 0.
(8) Foreachv €V anda € C, |lav]] = |a| - ||v]-
(4) Foreveryu,v eV, |lu+v| <|ul| + |jvl| (the triangle inequality).
The concept of a norm is a generalization of the concept of size or distance
(from the zero vector). For everyu,v € V, we may consider the number ||z — v|

as the distance between v and v. Hence |jul| is the distance of u from 0, or the
size of u.

The simplest examples of norms are the absolute value on R and €. Here
are some more:

Example 1.5: IfV = R"orV = €7, thenforeachx = (z,73,...,7,) € V we

define
flxll = | D lzxl?
k=1
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We will soon see that this formula definesanormon V. Itis called the Euclidean
norm.

Example 1.6: Let V be as in the previous example. We define thereon a
different norm. Let

oo = max{la:k[ k= 12n}

This is called the uniform norm.

Example 1.7: On the linear spaces V = R" and V = C" we can define many
different norms. One common norm thereon, other than the previous two, is

Il = awl.
k=1
It is easy to check that this is in fact a norm.
Example 1.8: IfV = Cla,b] thenforeach f € V,

1710 = max{7(2)

is a norm. This norm is also called the uniform norm.

agxgb}

If V is an inner product space, then there is a natural norm defined thereon.
It is given by
o]l = y/ (v, v).
To prove that this is indeed anorm on V, we first prove the following important
inequality.

Theorem 1.6: (Cauchy-Schwarz Inequality) Let V be an inner product space.
For eachu,v € V we have

[{w, 0) | < flufl-llo]l-

Proof: If (u,v) = 0, then there is nothing to prove. So let us assume that
{u,v)} # 0 (and thus u,v # 0). For convenience set a = {(u,v) (a may be a
complex number). Thus for every real number A we have

0 < Jlu — Aav|2 = (u — Aav, u — Aav)
= (u,u) — A {u,av) — X {av, u) + X2 (av, av)
= {|ul|? — \@ (u,v) — Aa {v,u) + Na@ (v,v)
= ||ul|? — M@a — Xa@ + Na@||v||?

= [[ull® — 2X|al* + X[af*||v]/>.



12 2. The Norm

We consider the last expression as a quadratic polynomial in A which is non-
negative for every real A. For this to happen the discriminant must be non-
positive, from which the result follows. Equivalently, setting A = ﬁ; (the
minimal value of the polynomial) in the above expression leads to

0 < Jlulfllolf* - |af?.
Thus |a| < [Jul{||v]|. Since a = {u, v) this proves the desired inequality. ]

Theorem 1.7: LetV be an inner product space. For eachv € V the equation

lv]} = V/{v,v) definesa normonV.

Proof: By the definition of an inner product, the value (v,v) is non-negative
for every v € V. This being so, the expression /(v, v) is well defined (we take
the non-negative square root). Now |jv|| = 0 if and only if (v,v) = 0. By the
definition of the inner product this condition is equivalent to v = 0. Thus
Conditions 1 and 2 are satisfied. To prove Condition 3, leta € €. Then
lavl? = (av,av) = [a]* (v,0) = |af* - [jv]®
and thus [lav]| = |a| - o]
It remains to prove the triangle inequality. To this end, let u,v € V. Then
lu + v = (u+ v, u+v)
= {u,u) + (4, v) + (v,u) + (v,v)
= [lul® + (u, v) + {u,v) + |[v]/>.

The expression (u,v) + (u,v) is a real number. From the Cauchy-Schwarz
inequality it follows that

(w0} + T, 0)] < 21 (u,0) | < 2ful] - o],

Thus
o+ v]® < Jlul® + 2Jull - flolf + o]l = ([u]l + [l0]])?.
This proves the triangle inequality and the theorem. |
Among the various examples we gave of norms, only the Euclidean norm is
a norm defined via an inner product. The inner product on which it is based

is the standard inner product of Example 1.2. From Theorem 1.7 it therefore
follows that the Euclidean norm is really and truly a norm.

From the Cauchy-Schwarz and the triangle inequalities we can derive other
more specific inequalities.
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Example 1.9: If we consider R” with the standard inner product, then for
each x € R the norm of x is given by

Il = VR = | Y
k=1

This is also called the distance from x to 0 (recall the Pythagorean Theorem).
From the Cauchy-Schwarz inequality we obtain, for everyx,y € R”,

n n
2 2
S a}y| 2 V-
k=1 k=1

Example 1.10: If we consider C" with the standard inner product then as
above, the norm of x € C" is given by

Il = vEE = | 3 lal2
k=1

From the Cauchy-Schwarz inequality we obtain, for everyx,y € C",

i TkPr) < \l i lﬂikin Xn: lyx|2.
k=1 k=1 k=1

As a result of the triangle inequality we have, for each x,y € C",

(1.2) \Jilfﬂk*‘yklz < Jilxkler\Jilyklz-
k=1

n
> mhuk
k=1

(1.1)

k=1 k=1

Example 1.11: We now use the previous results to prove that £, is in fact a
linear space, and that the inner product defined in Example 1.4 is indeed an
inner product. Let x,y € ¢,. We first prove that the inner product x-y is well
defined. We recall that

o0 m
xy = Z TnTn = nllg'%o Z ZnTn-
n=1

n=1

We prove that the above series converges absolutely, i.e., the series -7 |20 7x]
converges. For each natural integer m we have from (1.1)

S agil < J 3 mFJ $ gal? < J > wJ 3 (gal? = lx] - ¥l
n=1 n=1 n=1 n=1 n=1

The partial sums S,,, = 0, |z, ¥n| are bounded above by ||x||- {ly|. Since these
partial sums {S,, }%°_, are monotonically increasing, they must converge. Thus
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the series 37 | z,%, converges, and the inner product on ¢, is well defined.
It remains to prove that ¢ is closed under addition. That is, we show that
ifx,y € £ then x +y € ¢,. We must verify that for x,y € ¢, the series
Y021 |zn + yn|? converges. From the inequality (1.2) we have that for each m

1 172
Sialen + 9ol < | (S o)+ (S0 P

< (Il + Iyl

The partial sums Y7, |z, + yn|? are monotonically increasing and bounded
above by the finite value (|[x|| + ||y||)2. Thus the series converges andx +y € ¢,.

Example 1.12: With the inner product of Example 1.3, the Cauchy-Schwarz
inequality on the space of continuous functions Cla, b] is given by

2
< ( [ |f<x>|2dz> ( [ lg(z)l"‘dx> .

/ ’ f@)a@) d

Exercises

et
.

Prove that the “norms” defined in Examples 1.6-1.8 are in fact norms.

2, (a) Provethatforany f,g € Cla,b], with inner product

(o) = [ 1@,

we have

1 /b b
z/a / 1f(@)9(y) = 9(2)f (9) dzdy = [|f|*- llg]* ~ | (£, 9) >
(b) Use the equality in (a) to prove the Cauchy-Schwarz inequality on
Cla, b].

3. LetV beaninner product space, u,v € V, u,v # 0.
{(a) Show that (u,v) = [|Jul} - ||v]| if and only if u = av for some a € C.
(b) Show that ||u + v|| = |[u]| + ||v]| if and only if « = av for some a > 0.

4. LetV be aninner product space. Prove that for all u, v € V the “Parallelo-
gram law”
llu + 2 + flu — o)) = 2Jjul® + 2fjv]?

holds.

5. LetV be areal inner product space. Prove that foreachu,v € V

1 1
(w,v) = Zllu +olf* = Zlu - o]
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6. LetV be a complex inner product space. Prove that for each u,v € V

1 1 i . { .
(uy0) = gllu+ ol = 7w = ol + L+ v — 5w~ io].

7.  On the basis of the previous two exercises prove that in every normed
linear space for which the parallelogram law holds we can define an inner
product associated with the given norm.

8. Prove that for any natural number n and real numbers z}, z3, ..., z, we
have the inequality
S <

3. Orthogonal and Orthonormal Systems

L
2

S

Ly
-z
L f

n
> t)
k=1

Definition 1.8: Let V be an inner product space and w,v € V. We say that u
and v are perpendicular to each other, or orthogonal, if (u,v) = 0. We denote
this factbyu L v.

Definition 1.9: LetV be an inner product space. A finite sequence {u}7_, or
an infinite sequence {u}32; of vectors in'V is called an orthogonal system if
ug # 0 for each k and uy, L uj for allk # j. If, in addition, |lug|| = 1 for everyk,
then we say that we have an orthonormal system.

Every vector of length 1 (i.e., for which |[u|| = 1) is called a unit vector. This
being so, an orthonormal system is an orthogonal system where each of its
vectors is a unit vector. If we are given an orthogonal system {u;}%_, (where
n is finite or infinite) then we can easily obtain an orthonormal system by
“normalizing” each vector of the system. For each k, set ¢, = ﬂ%f]'l It follows
that [lex]| = 1foreach &, and e L e; for k # j. Thus {e;}}_, is an orthonormal
system of the same size as the orthogonal system {u;}?_,. More importantly,

span{e;}7_; = span{ug}?_;.

Proposition 1.10: Ler {u;}?_, bea finite orthogonal system in an inner prod-
uct spaceV . Then the vectors {u}}_, are linearly independent.

Proof: Assume that

aiu; + agup + -+ - + apuy = 0, a1,a2,...,a0, € C.
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Foreachk € {1,2,...,n}

0= <6, uk> = (a1u1 + auz + - - + Qpln, ug)
= a (u1, uk) + az (uz, ug) + -+ + ag (uk, ug) + - -+ + an (Un, ug)
=a1-04+ -+ ap_1-0 + ag- {(ug,ug) +ag 10+ -+ +a,-0
= a (ur, uk) .

Since (ug,ux) = |lug||> # 0, we must have a;, = 0. Thus a; = 0 for each &, and
the vectors {u,}7_; are linearly independent. [ |

Let {vg}}_, be any finite system of linearly independent vectors in an inner
product space V. Does there then exist an orthonormal system {e}7_, for
which

span{ex}f_; = span{vg}i_; ?
And ifyes, is there a simple method of constructing such a system {e; }7_, from
the original system {uv;}?_,? The answer to both questions is yes. One known
method of constructing an orthonormal system from the original system is
called the Gram-Schmidt process. We will quickly sketch this process in the
next section.

One of the many advantages of an orthonormal system is the relative ease
with which we can determine the coefficients of any vector in its linear span.
The formula for the coefficients is to be found in this next proposition.

Proposition 1.11: AssumeV is an inner product space, and {ey, ..., e,} an
orthonormal system therein. Ifu = Y }_; axer then for each k we have a;, =
(u, ex).

Proof:

(u,ex) = (a1e1 + azez + -+ + anen, €)

a1 {e1,ex) +az (e, ex) +--- + ag (ex, ex) + -+ - + an (en, €k)
=a;-0+a20+---+apl+---+a,0

= Q. ]

Thusif {e1,...,e,} is an orthonormal system, then for each « in its span we

have
o

n
u = Zakek = Z (u, er) eg.
k=1

k=1
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The coefficient a;, is uniquely determined by the formula a; = (u,e;). Note
that ey is only dependent upon u and e;. It is not dependent upon any of
the other basis vectors e;, j # k. In general, if u € span{vy,...,v,}, where
{v1,...,vn} is not an orthonormal system, then each of the coefficients a; in
the representation of u as a linear combination of v, - - -, v, will depend upon
every one of vy, ..., v, in some complicated manner. The above coefficients
are of such importance that they have a name.

Definition 1.12: LetV bean inner product space and {e;}_, an orthonormal
system therein (n may be finite or infinite). Letu € V. The numbers (u, e;) are
called the generalized Fourier coefficients of the vector u with respect to the
given orthonormal system.

An additional property of an orthonormal system is presented in the next
proposition.

Proposition 1.13: Let V be an inner product space and {e;;...,e,} an or-
thonormal system therein. If {ay};_, and {b;};_, are any sequences of scalars,
then

n n n _
<Z aker, Y bk6k> =" aib,
k=1 k=1 k=1
i.e, foru,v € span{ey,...,e,},
n

<u7v> = Z (ua ek) (v)ek)'

k=1

The proof of this proposition is similar to the proofs of Propositions 1.10
and 1.11. Note that there is also an analog of the last formula for calculating
(u, v) in the case when our basis is not orthonormal. But it contains n? rather
than only n terms.

This next theorem may be viewed as a generalization of the Pythagorean
Theorem in an inner product space.
Theorem 1.14: (Generalized Pythagorean Theorem) LetV bean inner prod-

uct space.

(a) Let{ui,...,un} bean orthogonal systeminV, anday,...,a, scalars. Then

2

n
> aku
k=1

=" |a[*|lug .
k=1
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(b) Let {e1,...,en} be an orthonormal system in V. Then for every u €
spanier,...,en}

n
ful® = 3" | (u, ex) |2
k=1
Proof: (a) This follows from the definitions.
ISR apunl® = (o awue, Ty agus ) = Sy Ty axdy ok, )

= Skt laxl el

(b) This is an immediate consequence of (a) or of Proposition 1.13. | |

We should consider (b) of the above theorem as a natural generalization of
the Euclidean norm which was defined on R” and C" (see Example 1.5). From
the isomorphism which exists between W = span{e,...,e,} and C* (here we
assume that V' is a complexlinear space) we can identify each vectoru € W with
its sequence of generalized Fourier coefficients (a1, az,...,a,) € C". Theorem
1.14 effectively says that [ju|| = |/(a1,...,an)||, where the norm on the right-
hand side is the Euclidean norm on €". Thus there is not, in some sense, a
significant difference between W and C™.

Exercises

1. Let C[-1,1] be the space of continuous functions f : [-1,1] — € with
inner product

o= [ llf(m)ax—)dz.

(@) Let Py(z) =1, Pi(z) = z, and Pz(z) = 1 — 3z2. Prove that this set of
polynomials is orthogonal in C[-1, 1].

(b) Find constants q, b, and ¢ such that the polynomial
Ps(z) = a + bz + cz® + «°

is orthogonal (perpendicular) to each of the previous polynomials.

2. Let P, be the space of real polynomials of degree less than or equal to 2.
To each f, g € P», define

(f,9) = /Ooof(z)g(m)e‘zda;.
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(a) Prove that this is an inner product on P.

(b) Showthattheset{l, 1 -z, 1—2z+ %x’-} is an orthonormal system
with respect to this inner product.

3. Let C!{0,1] be the space of continuous functions f : [0,1] — C with a
continuous first derivative on [0, 1].
(a) Prove that

- 1 -
(.9) = £0)-g0) + [ F (@@ do
is an inner product on C'[0, 1].

(b) Find an orthonormal system {hy, h2, h3} in C1[0, 1], with respect to
this inner product, for which

span{hi, hp, h3} = span{1, ¢, z°}.

4. Orthogonal Projections and Approximation in the Mean

Let V be an inner product space, and {ej,...,e,} an orthonormal system
therein. Set W = span{ey,...,e,}. Let u be an arbitrary vector in V. In the
previous section we defined the generalized Fourier coefficients of u to be
the (u,e), k = 1,...,n. Ifu ¢ W then u # Y 7_; (u, ) e, since u is not a
linear combination of the ey, ..., e,. Nevertheless there exists an important
connection between v and }"7_; {(u, ex) ex. In this section we study this link in
some detail.

Foreachu € V, weset 4 = Y 7_; (u,eg) ex. The vector 4 is said to be the
orthogonal projection ofu on W.

Propeosition 1.15: ForeachucV,
(@ (u—1a,w)=0forallweWw.
®) Jlu—w|?=llu—a)?+ % - w|? forallw e W.

Remark: Part (a) of this proposition says that the vector » — 4 is orthogonal to
every vector w € W. This being so, we sometimes say that u« — @ is orthogonal
to the subspace W, and writeu — 4 L W.
Proof: (a) We first prove that (u — i,e;) = Qforeveryj =1,2,...,n.
n n
(u—120,e5) = (u,e;) — <Z (u, eg) ek,ej> = (u,e;) — Z (u, ex) {ex, €5)
k=1

k=1

= (u, ;) — (u, ;) {ej, €5) = (u, ;) — (u,e5) = 0.
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We now take an arbitrary w € W. Thus w = E;-‘: 1 bje; for some scalars b;, by,
... by, and

n n n
(u—G,w) = <u—ﬂ,2bjej> = Zb_j(u—&,ej) = Eb_j-0=0.
j=1 i=1 j=1

(b)
From part (a) we have (v — @) L w foreveryw € W. Thus (u — @) L (4 — w)
since & — w € W. From part (a) of Theorem 1.14 we obtain

llu = wlf? = flu — @ + & — w|]? = [u— &2 + | — w|?

and this proposition is proved. n

We present consequences of this last result after the definition of distance
(which we have already met in Section 1.2).

Definition 1.16: Let V be any normed linear space. For each u,v € V, the
distance between v and v is the non-negative number |ju — v||.

To justify the term “distance” we list a number of basic properties which our
definition of distance satisfies:

(a) Foreachu,v € V,wehave ||u—v| = ||v—ul. Thatis, the distance between
v and v equals the distance between v and u.

(b) Foreachu €V, |ju — | = 0. That is, u is distant zero from itself,

(c) Foreveryu,v € V wehave ||u—v| = 0onlyifu = v. Thatis, if the distance
between v and v is zero then « equals v.

(d) Foreveryu,v,w € V, we have ||lu — w| < |Ju — v]| + ||[v — w|. That s, the
distance between u and w is always less than or equal to the sum of the
distances from » and w to any third point v.

Properties (a)—(c) are direct consequences of the definition of a norm. Property
(d) follows from the triangle inequality

v —wl = llu—v+v —w| < flu—vf + v -wl.

The main result of this section is the following characterization of the vector
closesttouin W.

Theorem 1.17: LetV be an inner product space and{ei, .. .,e,} an orthonor-
mal system therein. Set W = span{ei,...,en}, and letu € V. The vector
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@ = Yx_1 {u,ex) ex is a closest vector to v in W. In addition, i is the unique
vector in W whose distance from u is minimal.

Proof: We must show that |ju — 4|| < |ju — w|| for all w € W. This is the
meaning of the expression “a closest vector to » from W”. This is an immediate
consequence of part (b) of Proposition 1.15. Foreachw € W,

llu = wl® = |lu - 1% + & - wi®

and thus ||u — 4| < ||u —w|| for eachw € W. The uniqueness of % as the closest
vector is a result of this same equality. If ||u — || = ||u — w|| for some w € W,
then [|& — w|| = 0, which implies that w = 4. |

As we see 4 has a simple affinity to . It is the unique closest vector to u from
W. Naturally if u € W then 4@ = u. We will further consider this relationship
when we deal with how & might “represent” u and why.

Example 1.13: For the linear space C[—1, 1], the norm

i = ([ Irepas)

comes from the inner product

o= 11 (2)7(@) d.

In order to determine the closest function to f € C[-1,1] in the subspace
W = span{1l, z} we must find scalars a* and b* for which

If = (@ +0*z)[| < |If — (a + bz)||

foralla,b € C. Thefunctionse;(z) = % andey(z) = \/ga: forman orthonormal
basis for the space W. Thus our problem is equivalent to that of finding scalars
¢* and d* for which

[f = (cer + d"e2)]| < ||f — (cer + dez)||

for all ¢,d € €. According to Theorem 1.17 there is a unique solution to this
problem and it is given by

C*Z(f,el), d*=<f,82)~

If, for example, f(z) = z° then

1
c* _<f,el =/1$3% = 7

1 3 V6
— 3 —
={f,e2) —/103 \/;a:dx 5
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and thus
X X 5 /3 3
cei(z) + d'ex(z) = é\/;m =3

is the closest function to z3 in W with respect to the given norm.

One additional consequence of Proposition 1.15 is the following.

Proposition1.18: Let{ey,...,e,} beanorthonormal system in an inner prod-
uct spaceV . Then for eachu € V the following inequality holds:

2w e 2 < lul®.

k=1
Proof: Setting w = 0 in part (b) of Proposition 1.15 we obtain
lull? = flu — @l + [la)>.

Thus ||4|? < ||u||*>. From part (b) of Theorem 1.14
lal? =3 | (u,ex) 2
k=1

and the inequality follows. [ ]

It is not difficult to establish that 37, | (u, et} |* = |uf|? if and only if u €
span{ey,...,en}-

The Gram-Schmidt Process

Let V be an inner product space and {v1,...,v,} a system of linearly indepen-
dent vectors in V. We will describe a method whereby we obtain an orthonor-
mal system {ey, . .., e, } for which

span{v,...,vn} = span{e,...,en}.

The process is an n-step method whereby at step &, 1 < k < n, we build the
vector e, in such a way that

span{vy,...,v;} = span{ey,...,ex}.

Step 1: From the fact that the system {v1,...,v,} is linearly independent, we
have that v; # 0. We define e1 by

er = 2L
o ol
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It is clear that ||e;|| = 1 and that span{v:} = span{e, }.

Step 2: Let W1 = span{e; } and let 9; = (v, e1) €1 be the orthogonal projection
of v, on W1. From Proposition 1.15(a), v, — 92 L e;. In addition vp — @ # 0
since otherwise we would have v, € W1, contradicting the fact that the system
{v1, v} is linearly independent. Thus we may define

U2 — U2
Q== -
llvz — 2|l
It follows that e; L e, |lez|| = 1, and span{ej,e;} = span{v;,v;}. In other

words, the system {ej, ez} is an orthonormal system and it spans the same
subspace as that spanned by {v;,v2}.

Step k: Let Wi_1 = span{e,...,ex—1} and let 5, = 5’;11 (vk, €5) e; be the
orthogonal projection of v, on Wj,_;. From Proposition 1.15(a), vy — 9 1 Wi_1.
In addition, v; — # # 0. Thus we may define

vr — U
€ = T———.
llve — Bl
As a consequence span{ei,...,e;} = span{vy,...,v}, and {e1,...,e;} is an

orthonormal system.

We continue this process until the nth step where we obtain the desired
orthonormal system {ey,...,en}.
Exercises

1. letf e C[-n,n]. Foreacha,(,v € € define

Fla, B,7) = l/7r |f(z) — a — Bcosz — ycos 10z|*dz.

T J—n

Prove that F attains its minimum at a unique point (ayg, 5o, y0) and find

this point when
(@ f(z) =cos’z b flz) =23 (0 f(z)=sinz
(d) f(z)=1-2cosz (e) f(z)=|z| ) f(z)=/|sinz|

2.  Onthe linear space C[0, 2r] we define the inner product

{f,g) = Ozwf(x)g(x) dx.

cos2z sinz

(a) Prove thattheset S = {\/Lz_w’ e } is an orthonormal system.
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5.

(b) LetW be the subspace spanned by S, and let f(z) = z on the interval
[0,2x]. Find the function g in S which is closest to f (that is to say,
for which || f — g|| is minimal).

Consider the space C[—m, ] with the inner product

(f,9)= / f(z)g(z)

Let W = span{l, sinz, cosz, =}, and let f(z) = |z|. Find the function
g € W for which || f — ¢|| is as small as possible.

For each ¢, 3,7 € C define
1 g
F(a,B,7) = ;/ |z — a — Bcosz — vysin2z|?dr.

Show that F attains its minimum at exactly one point (ag, 89, ), and find
this point.

In the space C[—1, 1] we are given the functions
folz) =1, fi(z) =z +a, falz) =22+ bz +c, fa(z) =23+ Az’ + Bz + C

and it is known that {fo, f1, f2, f3} is an orthonormal system in C[—1,1]
with respect to the inner product

(9= [ 1@ .

(a) Calculatea,b, c.
(b) Foreache,p,v,d € C define

Fle,%,0) = [ 2% = afol@) = B(2) = 1f2(e) - 6s(e)da.

Prove that F attains its minimum at exactly one point (ay, 5o, 70, d0),
and find this point.

5. Infinite Orthonormal Systems

Let V be an inner product space. In this section we assume that dim(V) =

Let {e1, ez, ...} be an orthonormal system with an infinite number of vectors.
We remark that the concept of a basis in an infinite dimensional linear space
is problematic, to say the least. This being so, we should not assume a priori
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that the given orthonormal system is a basis or even a spanning set for V. We
will later return to this troublesome problem.

Theorem 1.19: (Bessel'sInequality) Foreachu € V, theseriesY 2, | (u,e,) |?
converges. In addition, the inequality

S| s en) 2 < ul?

n=1
holds.

Proof: Thisresultis animmediate consequence of Proposition 1.18. Foreach
m,
m
Sm =Y Hu,en) * < Jlull®.
n=1

That is, the sequence of partial sums { S, }>-_; is bounded above by ||u|2. Since
{Sm}o._; is a monotonically increasing sequence, it converges to a finite sum.
Thus

m
Him, 32 Cuen) < .

If we have the equality 32, | (u, e5) |? = ||ul|? then we say that Parseval’s
identity (sometimes called Parseval’s equality) holds for ». An immediate con-

sequence of Bessel's inequality is

Theorem 1.20: (Riemann-Lebesgue Lemma) Let {e;,ez,...} be an infinite
orthonormal system in an inner product spaceV . Letu € V. Then

Hm (u,en) =0.

Proof: From Bessel’s inequality, the series 332, | (u,en) |> converges. If a
series converges then the nth coefficient tends to zero as n tends to infinity. W

Asstated at the beginning of this section, the concept of a basis for an infinite
dimensional linear space is problematic. This whole question must be treated
carefully. One of the first problems which arises has to do with the proper
definition of an “infinite linear combination”. Let us be more specific. We are
given an inner product space V, an infinite sequence of vectors {u,uz,...}
therein, and a sequence of scalars {a,}32;. Can we give any meaning to the
expression “Y"%° ; apu,”? We are talking about the infinite sum of vectors

aju] + au2 + - + Gplp + -+
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and not an infinite sum of numbers! Even if we succeed in givingsome meaning
to the infinite sum of vectors, it will also be necessary to check that with this
meaning a number of properties of a basis are preserved. To this end, we make
use of the concept of convergence in norm.

Definition 1.21: Let {w,}_, be an infinite sequence of vectors in a normed
linear spaceV . We say that the sequence converges in norm fo the vectorw € V
if

Jim v - wn = 0.
That is to say, for each € > 0 there exists an m(¢) such that for allm > m(e) we
have ||lw — wp|} < e.

We can now give some meaning to what we mean by an “infinite linear
combination” of vectors.

Definition 1.22: Let {uj,uz,...} be an infinite sequence of vectors in the
normed linear spaceV. Let {a,}°2 | be a sequence of scalars. We say that the se-
ries> o2 1 anuy, convergesinnormtothevectorw € V, andwritew = > 52 Gntn,
if the partial sums wy, = Y - anuy, COnverge in norm tow. In other words, the
series Y02 | anuy, cOnverges in norm tow if
m
Tr!l_r)lgo w —T;lanun =0.

The interpretation of the expression “the vector w is contained in the span
of the infinite sequence {u,uy,...}” is that there exists a sequence of scalars
{an}%2, such that the linear combination aju) + - - - + apur, approaches w, as
m grows. The “nearness” of vectors, in a linear space with a norm, is measured
by the distance between them.

We can now formulate further desired properties of infinite orthonormal
systems.

Definition 1.23: Let{e), ¢z, ...} bean infinite orthonormal system in an inner
product spaceV . We will say that the system isclosed inV if for everyu € V we
have

m
nl}—{%o u— Z {u,en) en| =0.
n=1
Recallthat 37 (u, e, ) e, is the vector closest to v in span{ey, ..., e, }. Thus

a system is closed in V if for each element of V there is some infinite linear
combination from the system which converges in norm to the element.



